RP 2022-01: Vessel Electrification Investigation for the NCDOT Ferry System Jestern arolina

December 4, 2023

- 1. Project Overview
- 2. Analysis Methods & Options
- 3. Results
- 4. Analysis Inputs
- 5. Conclusions
- 6. Next Steps

1. Project Overview

Assess electrification options for four short haul routes:

- 1. Technical and Economic Feasibility
- 2. Workforce and Environmental Impacts
- 3. Implementation Planning

2. Options Analyzed – Vessel

Diesel Mechanical

- Diesel powered
- Mechanical drive
- Dual ICE propulsion
- Primary & backup ICE generator sets

Diesel Electric

- Diesel powered
- Electric drive
- Improved load matching
 - Smaller ICE
 - Reduced maintenance

Diesel Electric w/ Peak Shaving

- Diesel powered
- Electric drive
- On-board ESS
- Optimized ICE generator sets
 - Increased fuel efficiency
- Reduced
 maintenance
- ESS for low load and peak power requirements

Increasing Diesel

Engine Efficiency

Plug-In Hybrid

- Electric power
- Electric drive
- On-board ESS
- ESS charged from shore
- On-board generation for backup and/or range extension
- Low-cost electric power
- "Unlimited" range

Plug-In Electric

- Electric powered
- Electric drive
- On-board ESS
- ESS charged from shore
- Low-cost electric power
- Zero local emissions
- No ICE maintenance

Fuel Cell Electric

- Electric powered
- Electric drive
- On-board fuel cell generation
- Refueled from shore connection
- Zero local emissions
- No ICE maintenance

Replace Diesel Fuel with Alternative Fuels

2. Options Analyzed – Vessel

Diesel Mechanical

- Diesel powered
- Mechanical drive
- Dual ICE propulsion
- Primary & backup ICE generator sets

Diesel Electric

- Diesel powered
- Electric drive
- Improved load matching
 - Smaller ICE
 - Reduced
 maintenance

Diesel Electric w/ Peak Shaving

- Diesel powered
- Electric drive
- On-board ESS
- Optimized ICE generator sets
 - Increased fuel efficiency
- Reduced
 maintenance
- ESS for low load and peak power requirements

Option 1

Plug-In Hybrid

- Electric power
- Electric drive
- On-board ESS
- ESS charged from shore
- On-board generation for backup and/or range extension
- Low-cost electric power
- "Unlimited" range

Option 2

Plug-In Electric

- Electric powered
- Electric drive
- On-board ESS
- ESS charged from shore
- Low-cost electric power
- Zero local emissions
- No ICE maintenance

Fuel Cell Electric

- Electric powered
- Electric drive
- On-board fuel cell generation
- Refueled from shore connection
- Zero local emissions
- No ICE maintenance

Baseline

2. Options Analyzed – Charging

Grid → Vessel

- Grid connection through stepdown transformers, AC/DC conversion, filters, rapid charging system, etc.
- High power demand
- High demand charges

Grid → Shoreside ESS → Vessel

- Grid connection to ESS
- ESS capital and replacement costs
- Low power demand / demand charges
- High power from ESS to vessel

Grid → Shoreside ESS → Vessel Grid ← Shoreside ESS

- Grid connection to ESS
- ESS capital and replacement costs
- Low power demand / demand charges
- High power from ESS to vessel
- Periodic utility access for demand response → Revenue generated

2. Analysis Method

Cost components

Diesel Mechanical

- Equipment capital
- Fuel
- Maintenance

Electrical

- 1 Equipment capital
 - Fuel
 - Maintenance
 - Facilities capital
 - Batteries (with replacement)
 - Electricity

3. Results – DM Vessels

3. Currituck Sound

UNIVERSITY

3. Pamlico River

3. Cape Fear River

3. Neuse River

3. LCCA Summary

	Diesel Mechanical (\$M)	Plug-In Hybrid w/ Shore ESS (\$M)	Savings (\$M)	Savings (%)
Currituck Sound	\$ 62.8	\$ 49.5	\$ 13.3	21%
Pamlico River	\$ 62.8	\$ 50.4	\$ 12.4	20%
Cape Fear River	\$ 69.6	\$ 60.8	\$ 8.8	13%
Neuse River	\$ 86.1	\$ 57.7	\$ 28.4	33%

3. Results

Impact	Units	Plug-In Hybrid	Diesel Mechanical (Currituck Sound)	Diesel Mechanical (Neuse River)
CO ₂ e Vessel Only	Tons / year	166	2,490	4,233
CO ₂ e Vessel + Upstream	Tons / year	600	2,900	5,000
NO _x Vessel Only	Tons / year	3.4	50.3	85.5
PM ₁₀ Vessel Only	Tons / year	0.09	1.32	2.24
PM _{2.5} Vessel Only	Tons / year	0.09	1.28	2.18
VOC Vessel Only	Tons / year	0.18	2.63	4.48
CO Vessel Only	Tons / year	0.55	8.19	13.92
SO ₂ Vessel Only	Tons / year	0.0037	0.0557	0.0946
Health Impacts	\$ per Year	~\$25k to \$55k	\$313k to \$704k	\$612k to \$1,217k

1. Project Overview 2. Analysis – Methods & Options 3. Results 4. Analysis Inputs 5. Conclusions 6. Next Steps

4. Analysis Inputs

Capital Costs	Diesel Fuel	Electrical	Maintenance
 \$30M Vessel \$4M for elec. Batteries \$700/kWh to \$500/kWh Site specific grid improvements Elec upgrade - \$1.25M Rapid charging system - \$1.5M	 \$3.25/gal increasing \$0.10 annually Based on recent costs and historical trends 	 Utility specific rate structures Service Fees Demand Charge Energy Charge 2% annual cost increase based on historical trends 	 ICE preventive maintenance Electrical component maintenance schedules Rapid charging

5. Conclusions

Electrification

- Significant economic advantages over the vessel life cycle
- An order of magnitude reduction in environmental/health impacts

One-Side Charging with ESS

- Technical, economical, and operational advantages
- Trade annual operating costs for capital costs
- Mitigate grid demand and infrastructure improvements

6. Next Steps

Workforce Development

- Workforce impacts appear limited similar to MV Salvo
- Leverage programs like NC MARTEC

Implementation Plan

- 1. Currituck single vessel, simple operation, limited grid improvements
 - a. Manns Harbor slow charging equipment
- 2. Pamlico single vessel, simple operation, interested utility partner
- 3. Neuse multiple vessels, extensive operation, short charge time
- 4. Cape Fear multiple vessels, economic advantage, demanding operation

6. Next Steps

RP 2022-01: Vessel Electrification Investigation for the NCDOT Ferry System

CADMUS

